
django-naqsh Documentation
Release 2018.47.5

django-naqsh

Nov 23, 2018

Contents

1 Project Generation Options 3

2 Getting Up and Running Locally 5
2.1 Setting Up Development Environment . 5
2.2 Setup Email Backend . 6
2.3 Summary . 7

3 Getting Up and Running Locally With Docker 9
3.1 Prerequisites . 9
3.2 Attention, Windows Users . 9
3.3 Build the Stack . 9
3.4 Run the Stack . 10
3.5 Execute Management Commands . 10
3.6 (Optionally) Designate your Docker Development Server IP . 10
3.7 Configuring the Environment . 10
3.8 Tips & Tricks . 11

4 Settings 13

5 Linters 15
5.1 flake8 . 15
5.2 pylint . 15
5.3 pycodestyle . 15

6 Deployment on PythonAnywhere 17
6.1 Overview . 17
6.2 Getting your code and dependencies installed on PythonAnywhere 17
6.3 Setting environment variables in the console . 18
6.4 Database setup: . 18
6.5 Configure the PythonAnywhere Web Tab . 19
6.6 Optional: static files . 19
6.7 Future deployments . 20

7 Deployment on Heroku 21

8 Deployment with Docker 23
8.1 Prerequisites . 23

i

8.2 Understanding the Docker Compose Setup . 23
8.3 Configuring the Stack . 23
8.4 Optional: Use AWS IAM Role for EC2 instance . 24
8.5 HTTPS is On by Default . 24
8.6 (Optional) Postgres Data Volume Modifications . 24
8.7 Building & Running Production Stack . 24
8.8 Example: Supervisor . 25

9 PostgreSQL Backups with Docker 27
9.1 Prerequisites . 27
9.2 Creating a Backup . 27
9.3 Viewing the Existing Backups . 27
9.4 Copying Backups Locally . 28
9.5 Restoring from the Existing Backup . 28

10 FAQ 29
10.1 Why is there a django.contrib.sites directory in Django Naqsh? . 29
10.2 Why aren’t you using just one configuration file (12-Factor App) 29
10.3 Why doesn’t this follow the layout from Two Scoops of Django? 29

11 Troubleshooting 31

12 Indices and tables 33

ii

django-naqsh Documentation, Release 2018.47.5

A Cookiecutter template for Django.

Contents:

Contents 1

https://github.com/audreyr/cookiecutter

django-naqsh Documentation, Release 2018.47.5

2 Contents

CHAPTER 1

Project Generation Options

project_name: Your project’s human-readable name, capitals and spaces allowed.

project_slug: Your project’s slug without dashes or spaces. Used to name your repo and in other places where a
Python-importable version of your project name is needed.

description: Describes your project and gets used in places like README.rst and such.

author_name: This is you! The value goes into places like LICENSE and such.

email: The email address you want to identify yourself in the project.

domain_name: The domain name you plan to use for your project once it goes live. Note that it can be safely changed
later on whenever you need to.

version: The version of the project at its inception.

open_source_license: A software license for the project. The choices are:

1. MIT

2. BSD

3. GPLv3

4. Apache Software License 2.0

5. Not open source

timezone: The value to be used for the TIME_ZONE setting of the project.

windows: Indicates whether the project should be configured for development on Windows.

use_pycharm: Indicates whether the project should be configured for development with PyCharm.

use_docker: Indicates whether the project should be configured to use Docker and Docker Compose.

postgresql_version: Select a PostgreSQL version to use. The choices are:

1. 10.3

2. 10.2

3

https://opensource.org/licenses/MIT
https://opensource.org/licenses/BSD-3-Clause
https://www.gnu.org/licenses/gpl.html
http://www.apache.org/licenses/LICENSE-2.0
https://www.jetbrains.com/pycharm/
https://github.com/docker/docker
https://docs.docker.com/compose/
https://www.postgresql.org/docs/

django-naqsh Documentation, Release 2018.47.5

3. 10.1

4. 9.6

5. 9.5

6. 9.4

7. 9.3

use_celery: Indicates whether the project should be configured to use Celery.

use_mailhog: Indicates whether the project should be configured to use MailHog.

use_sentry: Indicates whether the project should be configured to use Sentry.

use_whitenoise: Indicates whether the project should be configured to use WhiteNoise.

use_heroku: Indicates whether the project should be configured so as to be deployable to Heroku.

use_travisci: Indicates whether the project should be configured to use Travis CI.

use_gitlabci: Indicates whether the project should be configured to use Gitlab CI.

use_grappelli: Indicates whether the project should be configured to use Django Grappelli.

use_cors_headers: Indicates whether the project should be configured to use Django CORS Headers.

keep_local_envs_in_vcs: Indicates whether the project’s .envs/.local/ should be kept in VCS (comes in handy
when working in teams where local environment reproducibility is strongly encouraged).

debug: Indicates whether the project should be configured for debugging. This option is relevant for Cookiecutter
Django developers only.

4 Chapter 1. Project Generation Options

https://github.com/celery/celery
https://github.com/mailhog/MailHog
https://github.com/getsentry/sentry
https://github.com/evansd/whitenoise
https://github.com/heroku/heroku-buildpack-python
https://travis-ci.org/
https://about.gitlab.com/features/gitlab-ci-cd/
http://grappelliproject.com/
https://github.com/ottoyiu/django-cors-headers

CHAPTER 2

Getting Up and Running Locally

2.1 Setting Up Development Environment

Make sure to have the following on your host:

• Python 3.6

• PostgreSQL.

• Redis, if using Celery

First things first.

1. Create a virtualenv:

$ python3.6 -m venv <virtual env path>

2. Activate the virtualenv you have just created:

$ source <virtual env path>/bin/activate

3. Install development requirements:

$ pip install -r requirements/local.txt

4. Create a new PostgreSQL database using createdb:

$ createdb <what you've entered as the project_slug at setup stage>

Note: if this is the first time a database is created on your machine you might need an initial PostgreSQL set
up to allow local connections & set a password for the postgres user. The postgres documentation explains
the syntax of the config file that you need to change.

5. Set the environment variables for your database(s):

5

https://www.postgresql.org/download/
https://redis.io/download
https://www.postgresql.org/docs/current/static/app-createdb.html
http://suite.opengeo.org/docs/latest/dataadmin/pgGettingStarted/firstconnect.html
http://suite.opengeo.org/docs/latest/dataadmin/pgGettingStarted/firstconnect.html
https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

django-naqsh Documentation, Release 2018.47.5

$ export DJANGO_DATABASE_URL=postgres://postgres:<password>@127.0.0.1:5432/<DB
→˓name given to createdb>
Optional: set broker URL if using Celery
$ export CELERY_BROKER_URL=redis://localhost:6379/0

Note: Check out the Settings page for a comprehensive list of the environments variables.

See also:

To help setting up your environment variables, you have a few options:

• create an .env file in the root of your project and define all the variables you need in it. Then you just need
to have DJANGO_READ_DOT_ENV_FILE=True in your machine and all the variables will be read.

• Use a local environment manager like direnv

6. Apply migrations:

$ python manage.py migrate

7. See the application being served through Django development server:

$ python manage.py runserver 0.0.0.0:8000

2.2 Setup Email Backend

2.2.1 MailHog

Note: In order for the project to support MailHog it must have been bootstrapped with use_mailhog set to y.

MailHog is used to receive emails during development, it is written in Go and has no external dependencies.

For instance, one of the packages we depend upon, django-allauth sends verification emails to new users signing
up as well as to the existing ones who have not yet verified themselves.

1. Download the latest MailHog release for your OS.

2. Rename the build to MailHog.

3. Copy the file to the project root.

4. Make it executable:

$ chmod +x MailHog

5. Spin up another terminal window and start it there:

./MailHog

6. Check out http://127.0.0.1:8025/ to see how it goes.

Now you have your own mail server running locally, ready to receive whatever you send it.

6 Chapter 2. Getting Up and Running Locally

https://direnv.net/
https://github.com/mailhog/MailHog
http://127.0.0.1:8025/

django-naqsh Documentation, Release 2018.47.5

2.2.2 Console

Note: If you have generated your project with use_mailhog set to n this will be a default setup.

Alternatively, deliver emails over console via EMAIL_BACKEND = 'django.core.mail.backends.
console.EmailBackend'.

In production, we have Mailgun configured to have your back!

2.3 Summary

Congratulations, you have made it! Keep on reading to unleash full potential of Cookiecutter Django.

2.3. Summary 7

https://www.mailgun.com/

django-naqsh Documentation, Release 2018.47.5

8 Chapter 2. Getting Up and Running Locally

CHAPTER 3

Getting Up and Running Locally With Docker

The steps below will get you up and running with a local development environment. All of these commands assume
you are in the root of your generated project.

3.1 Prerequisites

• Docker; if you don’t have it yet, follow the installation instructions;

• Docker Compose; refer to the official documentation for the installation guide.

3.2 Attention, Windows Users

Currently PostgreSQL (psycopg2 python package) is not installed inside Docker containers for Windows users,
while it is required by the generated Django project. To fix this, add psycopg2 to the list of requirements inside
requirements/base.txt:

Python-PostgreSQL Database Adapter
psycopg2==2.6.2

Doing this will prevent the project from being installed in an Windows-only environment (thus without usage of
Docker). If you want to use this project without Docker, make sure to remove psycopg2 from the requirements
again.

3.3 Build the Stack

This can take a while, especially the first time you run this particular command on your development system:

$ docker-compose -f local.yml build

9

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/compose/install/

django-naqsh Documentation, Release 2018.47.5

Generally, if you want to emulate production environment use production.yml instead. And this is true for any
other actions you might need to perform: whenever a switch is required, just do it!

3.4 Run the Stack

This brings up both Django and PostgreSQL. The first time it is run it might take a while to get started, but subsequent
runs will occur quickly.

Open a terminal at the project root and run the following for local development:

$ docker-compose -f local.yml up

You can also set the environment variable COMPOSE_FILE pointing to local.yml like this:

$ export COMPOSE_FILE=local.yml

And then run:

$ docker-compose up

To run in a detached (background) mode, just:

$ docker-compose up -d

3.5 Execute Management Commands

As with any shell command that we wish to run in our container, this is done using the docker-compose -f
local.yml run --rm command:

$ docker-compose -f local.yml run --rm django python manage.py migrate
$ docker-compose -f local.yml run --rm django python manage.py createsuperuser

Here, django is the target service we are executing the commands against.

3.6 (Optionally) Designate your Docker Development Server IP

When DEBUG is set to True, the host is validated against ['localhost', '127.0.0.1', '[::1]']. This
is adequate when running a virtualenv. For Docker, in the config.settings.local, add your host devel-
opment server IP to INTERNAL_IPS or ALLOWED_HOSTS if the variable exists.

3.7 Configuring the Environment

This is the excerpt from your project’s local.yml:

...

postgres:
build:
context: .

(continues on next page)

10 Chapter 3. Getting Up and Running Locally With Docker

django-naqsh Documentation, Release 2018.47.5

(continued from previous page)

dockerfile: ./compose/production/postgres/Dockerfile
volumes:
- local_postgres_data:/var/lib/postgresql/data
- local_postgres_data_backups:/backups

env_file:
- ./.envs/.local/.postgres

...

The most important thing for us here now is env_file section enlisting ./.envs/.local/.postgres. Gen-
erally, the stack’s behavior is governed by a number of environment variables (env(s), for short) residing in envs/,
for instance, this is what we generate for you:

.envs
.local

.django

.postgres
.production

.caddy

.django

.postgres

By convention, for any service sI in environment e (you know someenv is an environment when there is a
someenv.yml file in the project root), given sI requires configuration, a .envs/.e/.sI service configuration
file exists.

Consider the aforementioned .envs/.local/.postgres:

PostgreSQL
--
POSTGRES_HOST=postgres
POSTGRES_DB=<your project slug>
POSTGRES_USER=XgOWtQtJecsAbaIyslwGvFvPawftNaqO
POSTGRES_PASSWORD=jSljDz4whHuwO3aJIgVBrqEml5Ycbghorep4uVJ4xjDYQu0LfuTZdctj7y0YcCLu

The three envs we are presented with here are POSTGRES_DB, POSTGRES_USER, and POSTGRES_PASSWORD (by
the way, their values have also been generated for you). You might have figured out already where these definitions
will end up; it’s all the same with django and caddy service container envs.

One final touch: should you ever need to merge .envs/production/* in a single .env run the .envs/
merget.py:

$ python .envs/merge.py

The .env file will then be created, with all your production envs residing beside each other.

3.8 Tips & Tricks

3.8.1 Activate a Docker Machine

This tells our computer that all future commands are specifically for the dev1 machine. Using the eval command we
can switch machines as needed.:

3.8. Tips & Tricks 11

django-naqsh Documentation, Release 2018.47.5

$ eval "$(docker-machine env dev1)"

3.8.2 Debugging

ipdb

If you are using the following within your code to debug:

import ipdb; ipdb.set_trace()

Then you may need to run the following for it to work as desired:

$ docker-compose -f local.yml run --rm --service-ports django

django-debug-toolbar

In order for django-debug-toolbar to work designate your Docker Machine IP with INTERNAL_IPS in
local.py.

3.8.3 Mailhog

When developing locally you can go with MailHog for email testing provided use_mailhog was set to y on setup.
To proceed,

1. make sure mailhog container is up and running;

2. open up http://127.0.0.1:8025.

3.8.4 Celery Flower

Flower is a “real-time monitor and web admin for Celery distributed task queue”.

Prerequisites:

• use_docker was set to y on project initialization;

• use_celery was set to y on project initialization.

By default, it’s enabled both in local and production environments (local.yml and production.yml Docker
Compose configs, respectively) through a flower service. For added security, flower requires its clients to provide
authentication credentials specified as the corresponding environments’ .envs/.local/.django and .envs/
.production/.django CELERY_FLOWER_USER and CELERY_FLOWER_PASSWORD environment variables.
Check out localhost:5555 and see for yourself.

12 Chapter 3. Getting Up and Running Locally With Docker

https://github.com/mailhog/MailHog/
https://github.com/mher/flower

CHAPTER 4

Settings

This project relies extensively on environment settings which will not work with Apache/mod_wsgi setups. It has
been deployed successfully with both Gunicorn/Nginx and even uWSGI/Nginx.

For configuration purposes, the following table maps environment variables to their Django setting and project settings:

Environment Variable Django Setting Development De-
fault

Production De-
fault

DJANGO_READ_DOT_ENV_FILE READ_DOT_ENV_FILE False False

13

django-naqsh Documentation, Release 2018.47.5

Environment Variable Django Setting Development Default Production Default
DJANGO_DATABASE_URL DATABASES auto w/ Docker; post-

gres://project_slug w/o
raises error

DJANGO_ADMIN_URL n/a ‘admin/’ raises error
DJANGO_DEBUG DEBUG True False
DJANGO_SECRET_KEY SECRET_KEY auto-generated raises error
DJANGO_SECURE_BROWSER_XSS_FILTERSE-

CURE_BROWSER_XSS_FILTER
n/a True

DJANGO_SECURE_SSL_REDIRECTSE-
CURE_SSL_REDIRECT

n/a True

DJANGO_SECURE_CONTENT_TYPE_NOSNIFFSE-
CURE_CONTENT_TYPE_NOSNIFF

n/a True

DJANGO_SECURE_FRAME_DENYSE-
CURE_FRAME_DENY

n/a True

DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINSHSTS_INCLUDE_SUBDOMAINSn/a True
DJANGO_SESSION_COOKIE_HTTPONLYSES-

SION_COOKIE_HTTPONLY
n/a True

DJANGO_SESSION_COOKIE_SECURESES-
SION_COOKIE_SECURE

n/a False

DJANGO_DEFAULT_FROM_EMAILDE-
FAULT_FROM_EMAIL

n/a “your_project_name <nore-
ply@your_domain_name>”

DJANGO_SERVER_EMAIL SERVER_EMAIL n/a “your_project_name <nore-
ply@your_domain_name>”

DJANGO_EMAIL_SUBJECT_PREFIXEMAIL_SUBJECT_PREFIXn/a “[your_project_name] “
DJANGO_ALLOWED_HOSTS ALLOWED_HOSTS [‘*’] [‘your_domain_name’]

The following table lists settings and their defaults for third-party applications, which may or may not be part of your
project:

Environment Variable Django Setting Development De-
fault

Production Default

CELERY_BROKER_URL CEL-
ERY_BROKER_URL

auto w/ Docker;
raises error w/o

raises error

DJANGO_AWS_ACCESS_KEY_IDAWS_ACCESS_KEY_ID n/a raises error
DJANGO_AWS_SECRET_ACCESS_KEYAWS_SECRET_ACCESS_KEYn/a raises error
DJANGO_AWS_STORAGE_BUCKET_NAMEAWS_STORAGE_BUCKET_NAMEn/a raises error
SENTRY_DSN SENTRY_DSN n/a raises error
DJANGO_SENTRY_CLIENT SENTRY_CLIENT n/a raven.contrib.django.raven_compat.DjangoClient
DJANGO_SENTRY_LOG_LEVELSEN-

TRY_LOG_LEVEL
n/a logging.INFO

MAILGUN_API_KEY MAIL-
GUN_ACCESS_KEY

n/a raises error

MAILGUN_DOMAIN MAIL-
GUN_SENDER_DOMAIN

n/a raises error

14 Chapter 4. Settings

mailto:noreply@your_domain_name
mailto:noreply@your_domain_name
mailto:noreply@your_domain_name
mailto:noreply@your_domain_name

CHAPTER 5

Linters

5.1 flake8

To run flake8:

$ flake8

The config for flake8 is located in setup.cfg. It specifies:

• Set max line length to 120 chars

• Exclude .tox,.git,*/migrations/*,*/static/CACHE/*,docs,node_modules

5.2 pylint

This is included in flake8’s checks, but you can also run it separately to see a more detailed report:

$ pylint <python files that you wish to lint>

The config for pylint is located in .pylintrc. It specifies:

• Use the pylint_common and pylint_django plugins. If using Celery, also use pylint_celery.

• Set max line length to 120 chars

• Disable linting messages for missing docstring and invalid name

• max-parents=13

5.3 pycodestyle

This is included in flake8’s checks, but you can also run it separately to see a more detailed report:

15

django-naqsh Documentation, Release 2018.47.5

$ pycodestyle <python files that you wish to lint>

The config for pycodestyle is located in setup.cfg. It specifies:

• Set max line length to 120 chars

• Exclude .tox,.git,*/migrations/*,*/static/CACHE/*,docs,node_modules

16 Chapter 5. Linters

CHAPTER 6

Deployment on PythonAnywhere

6.1 Overview

Full instructions follow, but here’s a high-level view.

First time config:

1. Pull your code down to PythonAnywhere using a Bash console and setup a virtualenv

2. Set your config variables in the postactivate script

3. Run the manage.py migrate and collectstatic commands

4. Add an entry to the PythonAnywhere Web tab

5. Set your config variables in the PythonAnywhere WSGI config file

Once you’ve been through this one-off config, future deployments are much simpler: just git pull and then hit the
“Reload” button :)

6.2 Getting your code and dependencies installed on PythonAny-
where

Make sure your project is fully commited and pushed up to Bitbucket or Github or wherever it may be. Then, log into
your PythonAnywhere account, open up a Bash console, clone your repo, and create a virtualenv:

git clone <my-repo-url> # you can also use hg
cd my-project-name
mkvirtualenv --python=/usr/bin/python3.6 my-project-name
pip install -r requirements/production.txt # may take a few minutes

17

django-naqsh Documentation, Release 2018.47.5

6.3 Setting environment variables in the console

Generate a secret key for yourself, eg like this:

python -c 'import random;import string; print("".join(random.SystemRandom().
→˓choice(string.digits + string.ascii_letters + string.punctuation) for _ in
→˓range(50)))'

Make a note of it, since we’ll need it here in the console and later on in the web app config tab.

Set environment variables via the virtualenv “postactivate” script (this will set them every time you use the virtualenv
in a console):

vi $VIRTUAL_ENV/bin/postactivate

TIP: If you don’t like vi, you can also edit this file via the PythonAnywhere “Files” menu; look in the “.virtualenvs”
folder.

Add these exports

export WEB_CONCURRENCY=4
export DJANGO_SETTINGS_MODULE='config.settings.production'
export DJANGO_SECRET_KEY='<secret key goes here>'
export DJANGO_ALLOWED_HOSTS='<www.your-domain.com>'
export DJANGO_ADMIN_URL='<not admin/>'
export MAILGUN_API_KEY='<mailgun key>'
export MAILGUN_DOMAIN='<mailgun sender domain (e.g. mg.yourdomain.com)>'
export DJANGO_AWS_ACCESS_KEY_ID=
export DJANGO_AWS_SECRET_ACCESS_KEY=
export DJANGO_AWS_STORAGE_BUCKET_NAME=
export DATABASE_URL='<see below>'

NOTE: The AWS details are not required if you’re using whitenoise or the built-in pythonanywhere static files service,
but you do need to set them to blank, as above.

6.4 Database setup:

Go to the PythonAnywhere Databases tab and configure your database.

• For Postgres, setup your superuser password, then open a Postgres console and run a CREATE DATABASE
my-db-name. You should probably also set up a specific role and permissions for your app, rather than using
the superuser credentials. Make a note of the address and port of your postgres server.

• For MySQL, set the password and create a database. More info here: https://help.pythonanywhere.com/pages/
UsingMySQL

• You can also use sqlite if you like! Not recommended for anything beyond toy projects though.

Now go back to the postactivate script and set the DATABASE_URL environment variable:

export DATABASE_URL='postgres://<postgres-username>:<postgres-password>@<postgres-
→˓address>:<postgres-port>/<database-name>'
or
export DATABASE_URL='mysql://<pythonanywhere-username>:<mysql-password>@<mysql-
→˓address>/<database-name>'
or
export DATABASE_URL='sqlite:////home/yourusername/path/to/db.sqlite'

18 Chapter 6. Deployment on PythonAnywhere

https://help.pythonanywhere.com/pages/UsingMySQL
https://help.pythonanywhere.com/pages/UsingMySQL

django-naqsh Documentation, Release 2018.47.5

If you’re using MySQL, you may need to run pip install mysqlclient, and maybe add mysqlclient to
requirements/production.txt too.

Now run the migration, and collectstatic:

source $VIRTUAL_ENV/bin/postactivate
python manage.py migrate
python manage.py collectstatic
and, optionally
python manage.py createsuperuser

6.5 Configure the PythonAnywhere Web Tab

Go to the PythonAnywhere Web tab, hit Add new web app, and choose Manual Config, and then the version of
Python you used for your virtualenv.

NOTE: If you’re using a custom domain (not on *.pythonanywhere.com), then you’ll need to set up a CNAME with
your domain registrar.

When you’re redirected back to the web app config screen, set the path to your virtualenv. If you used virtualen-
vwrapper as above, you can just enter its name.

Click through to the WSGI configuration file link (near the top) and edit the wsgi file. Make it look something like
this, repeating the environment variables you used earlier:

import os
import sys
path = '/home/<your-username>/<your-project-directory>'
if path not in sys.path:

sys.path.append(path)

os.environ['DJANGO_SETTINGS_MODULE'] = 'config.settings.production'
os.environ['DJANGO_SECRET_KEY'] = '<as above>'
os.environ['DJANGO_ALLOWED_HOSTS'] = '<as above>'
os.environ['DJANGO_ADMIN_URL'] = '<as above>'
os.environ['MAILGUN_API_KEY'] = '<as above>'
os.environ['MAILGUN_DOMAIN'] = '<as above>'
os.environ['DJANGO_AWS_ACCESS_KEY_ID'] = ''
os.environ['DJANGO_AWS_SECRET_ACCESS_KEY'] = ''
os.environ['DJANGO_AWS_STORAGE_BUCKET_NAME'] = ''
os.environ['DATABASE_URL'] = '<as above>'

from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

Back on the Web tab, hit Reload, and your app should be live!

NOTE: you may see security warnings until you set up your SSL certificates. If you want to supress them
temporarily, set DJANGO_SECURE_SSL_REDIRECT to blank. Follow the instructions here to get SSL set up:
https://help.pythonanywhere.com/pages/SSLOwnDomains/

6.6 Optional: static files

If you want to use the PythonAnywhere static files service instead of using whitenoise or S3, you’ll find its config-
uration section on the Web tab. Essentially you’ll need an entry to match your STATIC_URL and STATIC_ROOT

6.5. Configure the PythonAnywhere Web Tab 19

django-naqsh Documentation, Release 2018.47.5

settings. There’s more info here: https://help.pythonanywhere.com/pages/DjangoStaticFiles

6.7 Future deployments

For subsequent deployments, the procedure is much simpler. In a Bash console:

workon my-virtualenv-name
cd project-directory
git pull
python manage.py migrate
python manage.py collectstatic

And then go to the Web tab and hit Reload

TIP: if you’re really keen, you can set up git-push based deployments: https://blog.pythonanywhere.com/87/

20 Chapter 6. Deployment on PythonAnywhere

https://help.pythonanywhere.com/pages/DjangoStaticFiles

CHAPTER 7

Deployment on Heroku

Run these commands to deploy the project to Heroku:

heroku create --buildpack https://github.com/heroku/heroku-buildpack-python

heroku addons:create heroku-postgresql:hobby-dev
heroku pg:backups schedule --at '02:00 America/Los_Angeles' DATABASE_URL
heroku pg:promote DATABASE_URL

heroku addons:create heroku-redis:hobby-dev

If using mailgun:
heroku addons:create mailgun:starter

heroku addons:create sentry:f1

heroku config:set PYTHONHASHSEED=random

heroku config:set WEB_CONCURRENCY=4

heroku config:set DJANGO_DEBUG=False
heroku config:set DJANGO_SETTINGS_MODULE=config.settings.production
heroku config:set DJANGO_SECRET_KEY="$(openssl rand -base64 64)"

Generating a 32 character-long random string without any of the visually similiar
→˓characters "IOl01":
heroku config:set DJANGO_ADMIN_URL="$(openssl rand -base64 4096 | tr -dc 'A-HJ-NP-Za-
→˓km-z2-9' | head -c 32)/"

Set this to your Heroku app url, e.g. 'bionic-beaver-28392.herokuapp.com'
heroku config:set DJANGO_ALLOWED_HOSTS=

Assign with AWS_ACCESS_KEY_ID
heroku config:set DJANGO_AWS_ACCESS_KEY_ID=

(continues on next page)

21

django-naqsh Documentation, Release 2018.47.5

(continued from previous page)

Assign with AWS_SECRET_ACCESS_KEY
heroku config:set DJANGO_AWS_SECRET_ACCESS_KEY=

Assign with AWS_STORAGE_BUCKET_NAME
heroku config:set DJANGO_AWS_STORAGE_BUCKET_NAME=

git push heroku master

heroku run python manage.py migrate
heroku run python manage.py createsuperuser
heroku run python manage.py collectstatic --no-input

heroku run python manage.py check --deploy

heroku open

22 Chapter 7. Deployment on Heroku

CHAPTER 8

Deployment with Docker

8.1 Prerequisites

• Docker 1.10+.

• Docker Compose 1.6+

8.2 Understanding the Docker Compose Setup

Before you begin, check out the production.yml file in the root of this project. Keep note of how it provides
configuration for the following services:

• django: your application running behind Gunicorn;

• postgres: PostgreSQL database with the application’s relational data;

• redis: Redis instance for caching;

• caddy: Caddy web server with HTTPS on by default.

Provided you have opted for Celery (via setting use_celery to y) there are three more services:

• celeryworker running a Celery worker process;

• celerybeat running a Celery beat process;

• flower running Flower (for more info, check out Celery Flower instructions for local environment).

8.3 Configuring the Stack

The majority of services above are configured through the use of environment variables. Just check out Configuring
the Environment and you will know the drill.

23

https://github.com/mher/flower

django-naqsh Documentation, Release 2018.47.5

To obtain logs and information about crashes in a production setup, make sure that you have access to an external
Sentry instance (e.g. by creating an account with sentry.io), and set the SENTRY_DSN variable.

You will probably also need to setup the Mail backend, for example by adding a Mailgun API key and a Mailgun
sender domain, otherwise, the account creation view will crash and result in a 500 error when the backend attempts to
send an email to the account owner.

8.4 Optional: Use AWS IAM Role for EC2 instance

If you are deploying to AWS, you can use the IAM role to substitute AWS credentials, after which it’s safe to remove
the AWS_ACCESS_KEY_IDAND AWS_SECRET_ACCESS_KEY from .envs/.production/.django. To do
it, create an IAM role and attach it to the existing EC2 instance or create a new EC2 instance with that role. The role
should assume, at minimum, the AmazonS3FullAccess permission.

8.5 HTTPS is On by Default

SSL (Secure Sockets Layer) is a standard security technology for establishing an encrypted link between a server and
a client, typically in this case, a web server (website) and a browser. Not having HTTPS means that malicious network
users can sniff authentication credentials between your website and end users’ browser.

It is always better to deploy a site behind HTTPS and will become crucial as the web services extend to the IoT
(Internet of Things). For this reason, we have set up a number of security defaults to help make your website secure:

• If you are not using a subdomain of the domain name set in the project, then remember to put the your stag-
ing/production IP address in the DJANGO_ALLOWED_HOSTS environment variable (see Settings) before you
deploy your website. Failure to do this will mean you will not have access to your website through the HTTP
protocol.

• Access to the Django admin is set up by default to require HTTPS in production or once live.

The Caddy web server used in the default configuration will get you a valid certificate from Lets Encrypt and update
it automatically. All you need to do to enable this is to make sure that your DNS records are pointing to the server
Caddy runs on.

You can read more about this here at Automatic HTTPS in the Caddy docs.

8.6 (Optional) Postgres Data Volume Modifications

Postgres is saving its database files to the production_postgres_data volume by default. Change that if you
want something else and make sure to make backups since this is not done automatically.

8.7 Building & Running Production Stack

You will need to build the stack first. To do that, run:

docker-compose -f production.yml build

Once this is ready, you can run it with:

docker-compose -f production.yml up

24 Chapter 8. Deployment with Docker

https://sentry.io/welcome
https://mailgun.com
https://mailgun.com
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://aws.amazon.com/blogs/security/easily-replace-or-attach-an-iam-role-to-an-existing-ec2-instance-by-using-the-ec2-console/
https://caddyserver.com/docs/automatic-https

django-naqsh Documentation, Release 2018.47.5

To run the stack and detach the containers, run:

docker-compose -f production.yml up -d

To run a migration, open up a second terminal and run:

docker-compose -f production.yml run --rm django python manage.py migrate

To create a superuser, run:

docker-compose -f production.yml run --rm django python manage.py createsuperuser

If you need a shell, run:

docker-compose -f production.yml run --rm django python manage.py shell

To check the logs out, run:

docker-compose -f production.yml logs

If you want to scale your application, run:

docker-compose -f production.yml scale django=4
docker-compose -f production.yml scale celeryworker=2

Warning: don’t try to scale postgres, celerybeat, or caddy.

To see how your containers are doing run:

docker-compose -f production.yml ps

8.8 Example: Supervisor

Once you are ready with your initial setup, you want to make sure that your application is run by a process manager
to survive reboots and auto restarts in case of an error. You can use the process manager you are most familiar with.
All it needs to do is to run docker-compose -f production.yml up in your projects root directory.

If you are using supervisor, you can use this file as a starting point:

[program:{{cookiecutter.project_slug}}]
command=docker-compose -f production.yml up
directory=/path/to/{{cookiecutter.project_slug}}
redirect_stderr=true
autostart=true
autorestart=true
priority=10

Move it to /etc/supervisor/conf.d/{{cookiecutter.project_slug}}.conf and run:

supervisorctl reread
supervisorctl start {{cookiecutter.project_slug}}

For status check, run:

8.8. Example: Supervisor 25

django-naqsh Documentation, Release 2018.47.5

supervisorctl status

26 Chapter 8. Deployment with Docker

CHAPTER 9

PostgreSQL Backups with Docker

Note: For brevity it is assumed that you will be running the below commands against local environment, however,
this is by no means mandatory so feel free to switch to production.yml when needed.

9.1 Prerequisites

1. the project was generated with use_docker set to y;

2. the stack is up and running: docker-compose -f local.yml up -d postgres.

9.2 Creating a Backup

To create a backup, run:

$ docker-compose -f local.yml exec postgres backup

Assuming your project’s database is named my_project here is what you will see:

Backing up the 'my_project' database...
SUCCESS: 'my_project' database backup 'backup_2018_03_13T09_05_07.sql.gz' has been
→˓created and placed in '/backups'.

Keep in mind that /backups is the postgres container directory.

9.3 Viewing the Existing Backups

To list existing backups,

27

django-naqsh Documentation, Release 2018.47.5

$ docker-compose -f local.yml exec postgres backups

These are the sample contents of /backups:

These are the backups you have got:
total 24K
-rw-r--r-- 1 root root 5.2K Mar 13 09:05 backup_2018_03_13T09_05_07.sql.gz
-rw-r--r-- 1 root root 5.2K Mar 12 21:13 backup_2018_03_12T21_13_03.sql.gz
-rw-r--r-- 1 root root 5.2K Mar 12 21:12 backup_2018_03_12T21_12_58.sql.gz

9.4 Copying Backups Locally

If you want to copy backups from your postgres container locally, docker cp command will help you on that.

For example, given 9c5c3f055843 is the container ID copying all the backups over to a local directory is as simple
as

$ docker cp 9c5c3f055843:/backups ./backups

With a single backup file copied to . that would be

$ docker cp 9c5c3f055843:/backups/backup_2018_03_13T09_05_07.sql.gz .

9.5 Restoring from the Existing Backup

To restore from one of the backups you have already got (take the backup_2018_03_13T09_05_07.sql.gz
for example),

$ docker-compose -f local.yml exec postgres restore backup_2018_03_13T09_05_07.sql.gz

You will see something like

Restoring the 'my_project' database from the '/backups/backup_2018_03_13T09_05_07.sql.
→˓gz' backup...
INFO: Dropping the database...
INFO: Creating a new database...
INFO: Applying the backup to the new database...
SET
SET
SET
SET
SET
set_config

(1 row)

SET
...
ALTER TABLE
SUCCESS: The 'my_project' database has been restored from the '/backups/backup_2018_
→˓03_13T09_05_07.sql.gz' backup.

28 Chapter 9. PostgreSQL Backups with Docker

https://docs.docker.com/engine/reference/commandline/cp/

CHAPTER 10

FAQ

10.1 Why is there a django.contrib.sites directory in Django Naqsh?

It is there to add a migration so you don’t have to manually change the sites.Site record from example.com to
whatever your domain is. Instead, your {{cookiecutter.domain_name}} and {{cookiecutter.project_name}}
value is placed by Cookiecutter in the domain and name fields respectively.

See 0003_set_site_domain_and_name.py.

10.2 Why aren’t you using just one configuration file (12-Factor App)

TODO .. TODO

10.3 Why doesn’t this follow the layout from Two Scoops of Django?

You may notice that some elements of this project do not exactly match what we describe in chapter 3 of Two Scoops
of Django 1.11. The reason for that is this project, amongst other things, serves as a test bed for trying out new
ideas and concepts. Sometimes they work, sometimes they don’t, but the end result is that it won’t necessarily match
precisely what is described in the book I co-authored.

29

https://github.com/mazdakb/django-naqsh/blob/master/%7B%7Bcookiecutter.project_slug%7D%7D/%7B%7Bcookiecutter.project_slug%7D%7D/contrib/sites/migrations/0003_set_site_domain_and_name.py
https://www.twoscoopspress.com/collections/django/products/two-scoops-of-django-1-11
https://www.twoscoopspress.com/collections/django/products/two-scoops-of-django-1-11

django-naqsh Documentation, Release 2018.47.5

30 Chapter 10. FAQ

CHAPTER 11

Troubleshooting

This page contains some advice about errors and problems commonly encountered during the development of Django
Naqsh applications.

1. project_slug must be a valid Python module name or you will have issues on imports.

2. jinja2.exceptions.TemplateSyntaxError: Encountered unknown tag 'now'.:
please upgrade your cookiecutter version to >= 1.4 (see #528)

3. Internal server error on user registration: make sure you have configured the mail backend (e.g. Mailgun) by
adding the API key and sender domain

31

https://github.com/mazdakb/django-naqsh/issues/528#issuecomment-212650373

django-naqsh Documentation, Release 2018.47.5

32 Chapter 11. Troubleshooting

CHAPTER 12

Indices and tables

• genindex

• search

33

django-naqsh Documentation, Release 2018.47.5

34 Chapter 12. Indices and tables

Index

Symbols
12-Factor App, 29

C
compose, 23

D
deployment, 23
Docker, 9
docker, 23
docker-compose, 23

F
FAQ, 29

H
Heroku, 21

L
linters, 15

P
pip, 5
PostgreSQL, 5
PythonAnywhere, 17

V
virtualenv, 5

35

	Project Generation Options
	Getting Up and Running Locally
	Setting Up Development Environment
	Setup Email Backend
	Summary

	Getting Up and Running Locally With Docker
	Prerequisites
	Attention, Windows Users
	Build the Stack
	Run the Stack
	Execute Management Commands
	(Optionally) Designate your Docker Development Server IP
	Configuring the Environment
	Tips & Tricks

	Settings
	Linters
	flake8
	pylint
	pycodestyle

	Deployment on PythonAnywhere
	Overview
	Getting your code and dependencies installed on PythonAnywhere
	Setting environment variables in the console
	Database setup:
	Configure the PythonAnywhere Web Tab
	Optional: static files
	Future deployments

	Deployment on Heroku
	Deployment with Docker
	Prerequisites
	Understanding the Docker Compose Setup
	Configuring the Stack
	Optional: Use AWS IAM Role for EC2 instance
	HTTPS is On by Default
	(Optional) Postgres Data Volume Modifications
	Building & Running Production Stack
	Example: Supervisor

	PostgreSQL Backups with Docker
	Prerequisites
	Creating a Backup
	Viewing the Existing Backups
	Copying Backups Locally
	Restoring from the Existing Backup

	FAQ
	Why is there a django.contrib.sites directory in Django Naqsh?
	Why aren’t you using just one configuration file (12-Factor App)
	Why doesn’t this follow the layout from Two Scoops of Django?

	Troubleshooting
	Indices and tables

